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Invariance principle for extension of hydrodynamics: Nonlinear viscosity
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Invariance of nonhydrodynamic variables is put forward as a working principle of extending hydrodynamics
into a highly nonequilibrium domain. Following this principle, the leading modification of the viscosity due to
the gradient of the average velocity is derived explicitly from nonlinear moment Grad equgfionsnun.

Pure Appl. Math2, 331 (1949]. [S1063-651X97)01802-3

PACS numbgs): 05.60:+w, 05.70.Ln, 51.10ty, 51.20+d

The problem of extending the hydrodynamics into adependent nonlinear viscosity in the Navier-Stokes equa-
highly nonequilibrium domain beyond the Navier-Stokes ap-ions, and results are presented in an explicit form.
proximation remains one of the central and only partially ~Throughout the paper, we use the system of units where
resolved problems of the kinetic theory. The classicalBoltzmann’s constant and the particle’s mass are equal to 1,
Chapman-Ensko¢CE) method[1] provides, in principle, an andp, u, andT are the density, the average velocity, and the
opportunity of such extension, and leads to the solution ifemperature, respectively. The presspris p=pT, accord-
the form of a series in powers of the Knudsen numhethe  ing to the system of units adopted. The starting point is the
ratio between the mean-free path of a particle, and the scaket of one-dimensional nonlinear Grad equatifisfor the
of variations of the hydrodynamic quantities. The CE solu-hydrodynamic variableg, u, and T, coupled to the nonhy-
tion results in a formal expansion of the stress tensor and afrodynamic variabler, whereo is thexx component of the
the heat flux vector in the balance equations for the densitystress tensor:
the momentum, and the energy. The first-order teenig

the latter expansions leads to the Navier-Stokes equations, dp=—dx(pu), (1a)
while further terms are known as the Burneif) and the 3 B

3 : du=—udu—p lop—p oo (1b)
super-Burnett €°) correctiong 1]. t X X x0

However, as is now well known, even in the simplest
linear case, the Burnett and the super-Burnett hydrodynamics
violate the stability of the equilibrium for perturbations with
s_uffic@entl_y short wavelength2]. The possible root of this d10=—Uudyo— (413)pdu—(7/3)odu— L(r. (1d
violation is the poor convergency of the Taylor-like expan- u(T)
sions underlying the CE method. The situation is even more
complicated in the nonlinear domain, where the very strucHere u(T) is the temperature-dependent viscosity coeffi-
ture of the higher-order terms of the CE expansion remain§ient. We will adopt the formu(T)=«aT?, which is charac-
largely unknown. teristic to the point-center models of the particle’s collisions,

In this paper we consider the problem of extension of thevhere y varies from y=1 (Maxwellian moleculep to
hydrodynamics into a highly nonequilibrium domain on the y=1/2 (hard spheres and wherex is a dimensional factor
basis of a simplefin comparison to the Boltzmann equation [1]-
model—nonlinear ten-moment Grad equati@]. Even in Equation(1) provides a relatively simplén comparison
this model, however, the CE expansion appears to be rathé& the Boltzmann equatigrmodel of a coupling of the hy-
complicated in the full setting. Therefore we address anotheglrodynamic variablesp, u, andT, to the nonhydrodynamic
more restrictive problem: what is tHeading correction to  variable o, and corresponds to a heat nonconductive case.
the Navier-Stokes approximation when the characteristid he goal is to shorten the description, and to get a closed set
value of the average velocity is comparable to the heat veof equations with respect to the variablesu, andT. That
locity? It will be possible to indicate the terms of the CE is, we have to express the nonhydrodynamic variablia
expansion which are relevant to this leading correctiorierms of the hydrodynamic variablpsu, andT in Egs.(1b)
(namely, the terms containing the highest powers of the graand (1c). After that, the three equatiorida—(1c) will pro-
dient of flux). Further, however, it will be necessarysam  vide the desired closed system of hydrodynamic equations.
up all the relevant termsAt this point, instead of using the If the CE method is applied for this purpose to the system
CE expansion, we will take another route, namely, the(1), then one introduces the formal parameter in front of
method of invariant manifold4], which leads to the result the termpu ™o in Eq.(1d), and the solution is sought in the
more directly, and which does not require the summation tdorm of a series,ocg=3g€e" 1o(™, where (¥ gives the
be done explicitly. The correction amounts to a flux- Navier-Stokes closure relation, and where the further terms

o™ are due to a well-known recurrence procedure How-
ever, even in the framework of the systéf), the algebraic
*Permanent address: Computing Center, Russian Academy efructure of this recurrence procedure is fairly involved.
Sciences, Krasnoyarsk, 660036 Russian Federation. Moreover, looking ahead, we will have to deal with the

9 T=—ud,T—(2/3Tou—(2/3p ‘oo, (10
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terms of the CE expansion to arbitrary orderTherefore a to make the following identification: the invariance equation

different but equivalentin the context of the problejmoute  (6) is equivalentto the system of equations for the functions

of constructing the closure relatioh4] will be used. A andB, as resulting from the exact summation of the CE
First, we will introduce this route of computations consid- expansion{5]. Notice also that an explicit use of the Knud-

ering a simplified case of Eql), namely, the linear form of sen numbek was avoided.

this system. Using dimensionless variablép=Ap/py, With the identification just made, let us turn back to the

Su=Au/\T,, do=Ac/py, where O labels the equilibrium, nonlinear casél). Our goal is to compute the correction to

and A labels deviations of the corresponding quantitiestne Navier-Stokes closure relatiooys= — (4/3)udyu, for

(up=0 andoy=0), introducing the scaled time-space vari- high values of the average velocity. Consider first the Bur-

ablest’ =[po/u(Tp)t, andx’z[pol(\/T_OM(To)]x, linear-  hett correction as derived by the CE method from &g

izing Eq. (1), and after Fourier transforming in space and

omitting primes, we come to the following system for the o — f I+ 8(2-v , “1(5u)2

Fourier variablesSu,, dpy, anddoy: B 3 Mo g HP X

=_ i 4
0P~ (13 @ ~ 362 o(p " 10p). @
r?tﬁuk=—ik5pk—ik50'k, (2b)

The correction of the desired type is given by the nonlinear

b= —(413)ik duy— da. (200 term proportional to ¢,u)?. Each furthenth term of the CE
expansion contributes, among others, the nonlinear term pro-

The closure relatiodoy(Suy, op ., K) for Eqg. (2) was found  portional to @,u)"**. Such terms can be namédyjh-speed
exactly in the framework of the CE meth¢8]. A different  terms since they dominate the rest of the contributions in
route [4] will be used now. We seek the solution each order of the CE expansion when the characteristic av-

oo (dUk,opg.k) in the following form, prompted by the erage velocity is comparable to the heat velof&} Simple
linearity of the problem: dimensional analysis leads to a corlclusion that such terms

. are of the formug"d,u, whereg=p~*udyu is dimension-

Sy =iKA(K) 8uy— k*B(K) oy, 3 less. Therefore the CE expansion for the functiomay be

where thek-dependent function® and B are to be deter- formally rewritten as

mined. _ o _ 4 8(2-7)
The invariance principl¢4] requires that a closure rela- OcE=— i = — g+r,g2+ - +r,g"+- -
tion should be form invariant under both the microscopic and 3 9
the macroscopic dynamics. In the context of the syst&m X I+ - - - ®)
M .

the “microscopic” dynamics is defined by Ed2c) (the

equation for the nonhydrodynamic variabfe), while the  The series in the brackets is the collection of the high-speed
“macroscopic” dynamics is due to Eqe2a) and (2b) (the  contributions of interest, coming fromll the orders of the
equations for the hydrodynamic variablép, and du).  CE expansion, while the dots outside the brackets stand for
Thus, in accord witt{4], the closure relatiori3) should be  the terms of other nature. Thus the high-speed correction to
form invariant under both the dynamics due to E2p), and  he Navier-Stokes closure relation in the framework of the
the dynamics due to Eq&2a) and(2b). The “microscopic”  Grad equationgl) takes the form

time derivative of the functiorr, is obtained when the ex-

EJre)ssion(3) is substituted into the right-hand side of Eq. om=— pR(g)dy, (9)
20):
micro e ] ] ) whereR(g) is the function represented by a formal subse-
gy 0o =—(43)ikéu—ikASUtkBSp. (4 quence of CE terms in the expansi@. The functionR can
be viewed also as a dynamic modification of the viscosity
w due to the gradient of the average velocity.

We will now turn to the problem of an explicit derivation
98 of the functionR, Eq. (9). Following the principle of invari-
macro (O 350]( . . . .
O =———— U+ ——— 9, Py ance as explained above, we first compute the microscopic

JoU IOk derivative of the functiorv,, by substituting the expression
(9) into the right-hand side of Eq1d):

On the other hand, the “macroscopic” time derivative of the
closure relation(3) due to Egs(2a and(2b) reads

=ik(3B+A?)k?6u,+ k?A(1—k?B)dpy. (5)
micro —
The requirement of equivalence of both the derivatives, Op o=~ Udxon — (413)payu
M8y = 9" %o, for eachdu, and p, results in the — (713 du—[p/ w(T) oy
following system of equations for the functioAsandB:
={- 3+ fgR+Rlpdu+- - -, (10
— $-A=K?(3B+A?), B=A(1-k°B). (6)

where dots denote the terms irrelevant to the closure relation
The invariance equatior(6) concludes essentially the prob- (9) [such terms appear, of course, because(#qs not the
lem of constructing the closure relati¢8). Now we are able exact closure relatign
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Second, computing the macroscopic derivative of the clo-
sure relation(9) due to Egs(1a—(1¢), we have

dR ™
&Pacroo_m: —[du (TR U— u(T) d—g[&tg]ﬁxu .
— (TR ayu]. 11

In the latter expression, the time derivatives of the hydrody-
namic variables should be replaced with the right-hand sides
of Egs.(1a—(1c), where, in turn, the functiorw should be
replaced by the functionr,,;, Eq. (9). After some computa-

. . 2 1 %p 1 2
tion, we come to the following: 9
2 dR
o= gR+§<1—9R>(79R+(y—1>92d—g)}
XPdU+ -« -. (12) FIG. 1. Viscosity factoR(g) for Maxwellian molecules: exact

(solid), the Burnett approximatioridash, the Navier-Stokes ap-
Here dots stand again for the terms irrelevant to the preseffoximation(dots.

analysis.
Equating the relevant terms in Eq&l0) and (12), we _ (1-gRy)gRy+(3/2g*(dRy/dg)
come to the invariance equation for the functi®n Ri(9)=~ 29°Ry+g+(3/2) . (16

etc. That is, the solution for other models is constructed in

dR
—a2(1 — 2R2, 73 - —o=
(1=7g7(1-gR) dg TR [ +g(2=y)]R=2=0. the form of a series with the exact solution for the Maxwell-

(13 ian molecules as the leading term. For hard spheres

' . (B=1/2), the result to the first-order term reads
Equation(13) plays the same role in the problem under R,~R),\+ (1/2)R;, and is given in Fig. 2. The features of
consideration as Ed6) plays in the linear case, and is our the approximation obtained are qualitatively the same as in

main result. the case of the Maxwellian molecules. The question of con-
For Maxwellian molecules ¥=1), Eq. (13) simplifies  vergency of the procedure remains, however, beyond this
considerably, and is algebraic: paper, and we conclude with a discussion.
(i) The main feature of the above example of extending
g°R?*+ (2 +g)R—2=0. (14)  the hydrodynamic description into a highly nonequilibrium

and nonlinear domain can be expressed as follows: this is an

The solution which recovers the Navier-Stokes closure relaexact partial summatiorof the CE expansion. “Partial”

tion in the limit of smallg reads means that the relevant high-speed terms, dominating the

other contributions in the limit of the high average velocity,
—3-2g+3\1+(4/3)g+4g? were accounted to all the orders of the original CE expan-
= 4g? . (15 sion. “Exact” means that, though we have used the formally
different route, the result is indeed the sum of the relevant

MM

The functionRy v, Eq. (15), is given in Fig. 1. Notice that
the functionRy, is positive for all values of its argument
0, as is appropriate for the viscosity factor, while the Burnett
approximation to the functioR,;,, violates the positivity.

For other models ¥+# 1), the invariance equatiofl3) is
a rather complicated nonlinear ordinary differential equation
(ODE) with the initial condition R(0)=4/3 (the Navier-
Stokes condition Several ways to derive analytic results are
possible. One possibility is to expand the functiBninto
powers ofg, in the pointg=0. This way brings us back to
the original subseries of the CE expansjsee Eq.(8)]. In-
stead, we take the opportunity offered by the parameter
Introduce another paramet@=1- vy, and consider an ex-
pansion:

R(8,9)=Ro(9) + BR1(9) + BZRy(g) + - - -.

Substituting this expansion into the invariance equati), FIG. 2. Viscosity factoR(g) for hard spheres: the first approxi-
we deriveRy(g) =Rum(9), mation (solid), the solution for Maxwellian moleculeglash.
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subseries of the original CE expansion. In other words, if wg16) for other models suggests that the modified viscosity
now expand the functio®Ryu(9), Eq. (15), in powers of uR gives a vanishing contribution in the limit of very high

g, in the pointg=0, we come back to the corresponding values of the average velocity. This feature seems to be of no
series inside the brackets in E@). That this is indeed true surprise: if the average velocity is very high in comparison to
can be checked up to a few lower orders straightforwardlyother characteristic velocitigén our case, to the heat veloc-
though the complete proof requires a more involved analysisty), no mechanisms of momentum transfer are relevant ex-
and will be reported elsewhere. As the final comment to thi%ept for the transfer with the stream. However, a cautious
point, we would like to stress a certain similarity between the,amark is in order since the original “kinetic” descriptions
problem considered above gnd the_ frequent.situations Bre Grad equationgl) and not the Boltzmann equation. In
many—body pr_oblems: there IS no single 'ead"“’g',“” but any case, the result can be ugatileast as aderivedmodel
mstead there is the Igadn@b;ene&f the perturbation ex- of hydrodynamics in the highly nonequilibrium domain. On
pansion, under certain conditions. the other hand, the computations based on the invariance

(i) Let us discuss briefly the features of the resulting hy-_ -~ - :
drodynamics. The hydrodynamic equations are now given b\ZL‘3C\;\?(')?ka};etﬁigsg;ggtiils?sf%r rt)?ggrBeoslgzmann equafiap

Egs.(1a—(1c), whereo is replaced witho,, Eq. (9). First,
the correction concerns the nonlinear regime, and thus the The authors are thankful to Professor A. N. Gorban for
linearized form of new equations coincides with the linear-the discussion of results. I.V.K. acknowledges the support of
ized Navier-Stokes equations. Second, the solutidi for  the Alexander von Humboldt Foundation and of the Russian
the Maxwellian molecules and the result of approximationFoundation of Basic Resear¢Brant No. 95-02-038363a
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