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Invariance principle for extension of hydrodynamics: Nonlinear viscosity

Iliya V. Karlin,* G. Dukek, and T. F. Nonnenmacher
Department of Mathematical Physics, University of Ulm, Ulm, D-89069 Germany
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Invariance of nonhydrodynamic variables is put forward as a working principle of extending hydrodynamics
into a highly nonequilibrium domain. Following this principle, the leading modification of the viscosity due to
the gradient of the average velocity is derived explicitly from nonlinear moment Grad equations@Commun.
Pure Appl. Math.2, 331 ~1949!#. @S1063-651X~97!01802-3#

PACS number~s!: 05.60.1w, 05.70.Ln, 51.10.1y, 51.20.1d
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The problem of extending the hydrodynamics into
highly nonequilibrium domain beyond the Navier-Stokes a
proximation remains one of the central and only partia
resolved problems of the kinetic theory. The classi
Chapman-Enskog~CE! method@1# provides, in principle, an
opportunity of such extension, and leads to the solution
the form of a series in powers of the Knudsen numbere, the
ratio between the mean-free path of a particle, and the s
of variations of the hydrodynamic quantities. The CE so
tion results in a formal expansion of the stress tensor an
the heat flux vector in the balance equations for the dens
the momentum, and the energy. The first-order term (e) in
the latter expansions leads to the Navier-Stokes equati
while further terms are known as the Burnett (e2) and the
super-Burnett (e3) corrections@1#.

However, as is now well known, even in the simple
linear case, the Burnett and the super-Burnett hydrodynam
violate the stability of the equilibrium for perturbations wi
sufficiently short wavelength@2#. The possible root of this
violation is the poor convergency of the Taylor-like expa
sions underlying the CE method. The situation is even m
complicated in the nonlinear domain, where the very str
ture of the higher-order terms of the CE expansion rema
largely unknown.

In this paper we consider the problem of extension of
hydrodynamics into a highly nonequilibrium domain on t
basis of a simpler~in comparison to the Boltzmann equatio!
model—nonlinear ten-moment Grad equation@3#. Even in
this model, however, the CE expansion appears to be ra
complicated in the full setting. Therefore we address anot
more restrictive problem: what is theleading correction to
the Navier-Stokes approximation when the characteri
value of the average velocity is comparable to the heat
locity? It will be possible to indicate the terms of the C
expansion which are relevant to this leading correct
~namely, the terms containing the highest powers of the g
dient of flux!. Further, however, it will be necessary tosum
up all the relevant terms. At this point, instead of using the
CE expansion, we will take another route, namely,
method of invariant manifold@4#, which leads to the resul
more directly, and which does not require the summation
be done explicitly. The correction amounts to a flu
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dependent nonlinear viscosity in the Navier-Stokes eq
tions, and results are presented in an explicit form.

Throughout the paper, we use the system of units wh
Boltzmann’s constant and the particle’s mass are equal t
andr, u, andT are the density, the average velocity, and t
temperature, respectively. The pressurep is p5rT, accord-
ing to the system of units adopted. The starting point is
set of one-dimensional nonlinear Grad equations@3# for the
hydrodynamic variablesr, u, andT, coupled to the nonhy-
drodynamic variables, wheres is thexx component of the
stress tensor:

] tr52]x~ru!, ~1a!

] tu52u]xu2r21]xp2r21]xs, ~1b!

] tT52u]xT2~2/3!T]xu2~2/3!r21s]xu, ~1c!

] ts52u]xs2~4/3!p]xu2~7/3!s]xu2
p

m~T!
s. ~1d!

Here m(T) is the temperature-dependent viscosity coe
cient. We will adopt the formm(T)5aTg, which is charac-
teristic to the point-center models of the particle’s collision
where g varies from g51 ~Maxwellian molecules! to
g51/2 ~hard spheres!, and wherea is a dimensional factor
@1#.

Equation~1! provides a relatively simple~in comparison
to the Boltzmann equation! model of a coupling of the hy-
drodynamic variables,r, u, andT, to the nonhydrodynamic
variables, and corresponds to a heat nonconductive ca
The goal is to shorten the description, and to get a closed
of equations with respect to the variablesr, u, andT. That
is, we have to express the nonhydrodynamic variables in
terms of the hydrodynamic variablesr, u, andT in Eqs.~1b!
and ~1c!. After that, the three equations~1a!–~1c! will pro-
vide the desired closed system of hydrodynamic equatio

If the CE method is applied for this purpose to the syst
~1!, then one introduces the formal parametere21 in front of
the termpm21s in Eq. ~1d!, and the solution is sought in th
form of a series,sCE5(0

`en11s (n), wheres (0) gives the
Navier-Stokes closure relation, and where the further te
s (n) are due to a well-known recurrence procedure@1#. How-
ever, even in the framework of the system~1!, the algebraic
structure of this recurrence procedure is fairly involve
Moreover, looking ahead, we will have to deal with th
of
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terms of the CE expansion to arbitrary ordern. Therefore a
different but equivalent~in the context of the problem! route
of constructing the closure relations@4# will be used.

First, we will introduce this route of computations consi
ering a simplified case of Eq.~1!, namely, the linear form of
this system. Using dimensionless variablesdp5Dp/p0,
du5Du/AT0, ds5Ds/p0, where 0 labels the equilibrium
and D labels deviations of the corresponding quantit
(u050 ands050), introducing the scaled time-space va
ablest85@p0 /m(T0)#t, andx85@p0 /(AT0m(T0)#x, linear-
izing Eq. ~1!, and after Fourier transforming in space a
omitting primes, we come to the following system for th
Fourier variablesduk , dpk , anddsk :

] tdpk52~5/3!ikduk , ~2a!

] tduk52 ikdpk2 ikdsk , ~2b!

] tdsk52~4/3!ikduk2dsk . ~2c!

The closure relationdsk(duk ,dpk ,k) for Eq. ~2! was found
exactly in the framework of the CE method@5#. A different
route @4# will be used now. We seek the solutio
dsk(duk ,dpk ,k) in the following form, prompted by the
linearity of the problem:

dsk5 ikA~k!duk2k2B~k!dpk , ~3!

where thek-dependent functionsA andB are to be deter-
mined.

The invariance principle@4# requires that a closure rela
tion should be form invariant under both the microscopic a
the macroscopic dynamics. In the context of the system~2!,
the ‘‘microscopic’’ dynamics is defined by Eq.~2c! ~the
equation for the nonhydrodynamic variabledsk), while the
‘‘macroscopic’’ dynamics is due to Eqs.~2a! and ~2b! ~the
equations for the hydrodynamic variablesdpk and duk).
Thus, in accord with@4#, the closure relation~3! should be
form invariant under both the dynamics due to Eq.~2c!, and
the dynamics due to Eqs.~2a! and~2b!. The ‘‘microscopic’’
time derivative of the functionsk is obtained when the ex
pression~3! is substituted into the right-hand side of E
~2c!:

] t
microdsk52~4/3!ikduk2 ikAduk1k2Bdpk . ~4!

On the other hand, the ‘‘macroscopic’’ time derivative of t
closure relation~3! due to Eqs.~2a! and ~2b! reads

] t
macrodsk5

]dsk

]duk
] tduk1

]dsk

]dpk
] tdpk

5 ik~ 5
3B1A2!k2duk1k2A~12k2B!dpk . ~5!

The requirement of equivalence of both the derivativ
] t
microdsk5] t

macrodsk , for eachduk and dpk results in the
following system of equations for the functionsA andB:

2 4
32A5k2~ 5

3B1A2!, B5A~12k2B!. ~6!

The invariance equation~6! concludes essentially the prob
lem of constructing the closure relation~3!. Now we are able
s

d

,

to make the following identification: the invariance equati
~6! is equivalentto the system of equations for the function
A andB, as resulting from the exact summation of the C
expansion@5#. Notice also that an explicit use of the Knud
sen numbere was avoided.

With the identification just made, let us turn back to t
nonlinear case~1!. Our goal is to compute the correction t
the Navier-Stokes closure relation,sNS52(4/3)m]xu, for
high values of the average velocity. Consider first the B
nett correction as derived by the CE method from Eq.~1!:

sB52
4

3
m]xu1

8~22g!

9
m2p21~]xu!2

2
4

3
m2p21]x~r21]xp!. ~7!

The correction of the desired type is given by the nonlin
term proportional to (]xu)

2. Each furthernth term of the CE
expansion contributes, among others, the nonlinear term
portional to (]xu)

n11. Such terms can be namedhigh-speed
terms since they dominate the rest of the contributions
each order of the CE expansion when the characteristic
erage velocity is comparable to the heat velocity@6#. Simple
dimensional analysis leads to a conclusion that such te
are of the formmgn]xu, whereg5p21m]xu is dimension-
less. Therefore the CE expansion for the functions may be
formally rewritten as

sCE52mH 432
8~22g!

9
g1r 2g

21•••1r ng
n1•••J

3]xu1•••. ~8!

The series in the brackets is the collection of the high-sp
contributions of interest, coming fromall the orders of the
CE expansion, while the dots outside the brackets stand
the terms of other nature. Thus the high-speed correctio
the Navier-Stokes closure relation in the framework of t
Grad equations~1! takes the form

snl52mR~g!]xu, ~9!

whereR(g) is the function represented by a formal subs
quence of CE terms in the expansion~8!. The functionR can
be viewed also as a dynamic modification of the viscos
m due to the gradient of the average velocity.

We will now turn to the problem of an explicit derivatio
of the functionR, Eq. ~9!. Following the principle of invari-
ance as explained above, we first compute the microsc
derivative of the functionsnl by substituting the expressio
~9! into the right-hand side of Eq.~1d!:

] t
microsnl52u]xsnl2~4/3!p]xu

2~7/3!snl]xu2@p/m~T!#snl

5$2 4
31 7

3gR1R%p]xu1•••, ~10!

where dots denote the terms irrelevant to the closure rela
~9! @such terms appear, of course, because Eq.~9! is not the
exact closure relation#.
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Second, computing the macroscopic derivative of the c
sure relation~9! due to Eqs.~1a!–~1c!, we have

] t
macrosnl52@] tm~T!#R]xu2m~T!

dR

dg
@] tg#]xu

2m~T!R]x@] tu#. ~11!

In the latter expression, the time derivatives of the hydro
namic variables should be replaced with the right-hand s
of Eqs. ~1a!–~1c!, where, in turn, the functions should be
replaced by the functionsnl , Eq. ~9!. After some computa-
tion, we come to the following:

] t
macrosnl5H gR1

2

3
~12gR!S ggR1~g21!g2

dR

dgD J
3p]xu1•••. ~12!

Here dots stand again for the terms irrelevant to the pre
analysis.

Equating the relevant terms in Eqs.~10! and ~12!, we
come to the invariance equation for the functionR:

~12g!g2~12gR!
dR

dg
1gg2R21@ 3

21g~22g!#R2250.

~13!

Equation~13! plays the same role in the problem und
consideration as Eq.~6! plays in the linear case, and is ou
main result.

For Maxwellian molecules (g51), Eq. ~13! simplifies
considerably, and is algebraic:

g2R21~ 3
21g!R2250. ~14!

The solution which recovers the Navier-Stokes closure r
tion in the limit of smallg reads

RMM5
2322g13A11~4/3!g14g2

4g2
. ~15!

The functionRMM , Eq. ~15!, is given in Fig. 1. Notice that
the functionRMM is positive for all values of its argumen
g, as is appropriate for the viscosity factor, while the Burn
approximation to the functionRMM violates the positivity.

For other models (gÞ1), the invariance equation~13! is
a rather complicated nonlinear ordinary differential equat
~ODE! with the initial conditionR(0)54/3 ~the Navier-
Stokes condition!. Several ways to derive analytic results a
possible. One possibility is to expand the functionR into
powers ofg, in the pointg50. This way brings us back to
the original subseries of the CE expansion@see Eq.~8!#. In-
stead, we take the opportunity offered by the parameteg.
Introduce another parameterb512g, and consider an ex
pansion:

R~b,g!5R0~g!1bR1~g!1b2R2~g!1•••.

Substituting this expansion into the invariance equation~13!,
we deriveR0(g)5RMM(g),
-

-
s

nt

-

t

n

R1~g!52
~12gR0!gR01~3/2!g2~dR0 /dg!

2g2R01g1~3/2!
, ~16!

etc. That is, the solution for other models is constructed
the form of a series with the exact solution for the Maxwe
ian molecules as the leading term. For hard sphe
(b51/2), the result to the first-order term read
RHS'RMM1(1/2)R1, and is given in Fig. 2. The features o
the approximation obtained are qualitatively the same a
the case of the Maxwellian molecules. The question of c
vergency of the procedure remains, however, beyond
paper, and we conclude with a discussion.

~i! The main feature of the above example of extend
the hydrodynamic description into a highly nonequilibriu
and nonlinear domain can be expressed as follows: this i
exact partial summationof the CE expansion. ‘‘Partial’’
means that the relevant high-speed terms, dominating
other contributions in the limit of the high average velocit
were accounted to all the orders of the original CE exp
sion. ‘‘Exact’’ means that, though we have used the forma
different route, the result is indeed the sum of the relev

FIG. 1. Viscosity factorR(g) for Maxwellian molecules: exac
~solid!, the Burnett approximation~dash!, the Navier-Stokes ap-
proximation~dots!.

FIG. 2. Viscosity factorR(g) for hard spheres: the first approx
mation ~solid!, the solution for Maxwellian molecules~dash!.
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subseries of the original CE expansion. In other words, if
now expand the functionRMM(g), Eq. ~15!, in powers of
g, in the pointg50, we come back to the correspondin
series inside the brackets in Eq.~8!. That this is indeed true
can be checked up to a few lower orders straightforward
though the complete proof requires a more involved analy
and will be reported elsewhere. As the final comment to t
point, we would like to stress a certain similarity between
problem considered above and the frequent situations
many-body problems: there is no single leadingterm but
instead there is the leadingsubseriesof the perturbation ex-
pansion, under certain conditions.

~ii ! Let us discuss briefly the features of the resulting h
drodynamics. The hydrodynamic equations are now given
Eqs.~1a!–~1c!, wheres is replaced withsnl , Eq. ~9!. First,
the correction concerns the nonlinear regime, and thus
linearized form of new equations coincides with the line
ized Navier-Stokes equations. Second, the solution~15! for
the Maxwellian molecules and the result of approximat
-
-

e

,
s,
is
e
in

-
y

he
-

~16! for other models suggests that the modified viscos
mR gives a vanishing contribution in the limit of very hig
values of the average velocity. This feature seems to be o
surprise: if the average velocity is very high in comparison
other characteristic velocities~in our case, to the heat veloc
ity!, no mechanisms of momentum transfer are relevant
cept for the transfer with the stream. However, a cautio
remark is in order since the original ‘‘kinetic’’ description
are Grad equations~1! and not the Boltzmann equation. I
any case, the result can be used~at least! as aderivedmodel
of hydrodynamics in the highly nonequilibrium domain. O
the other hand, the computations based on the invaria
principle are possible also for the Boltzmann equation@4#,
and work in this direction is in progress.
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